Dynamics of Abelian Vortices Without Common Zeros in the Adiabatic Limit
نویسندگان
چکیده
منابع مشابه
Dynamics of Non-Abelian Vortices
The scattering is studied using moduli space metric for well-separated vortices of nonAbelian vortices in (2+1)-dimensional U(N) gauge theories with N Higgs fields in the fundamental representation. Unlike vortices in the Abelian-Higgs model, dynamics of nonAbelian vortices has a lot of new features; The kinetic energy in real space can be transfered to that of internal orientational moduli and...
متن کاملNon-Abelian Vortices without Dynamical Abelianization
Vortices carrying truly non-Abelian flux moduli, which do not dynamically reduce to Abelian vortices, are found in the context of softly-broken N = 2 supersymmetric chromodynamics (SQCD). By tuning the bare quark masses appropriately we identify the vacuum in which the underlying SU(N) gauge group is partially broken to SU(n)×SU(r)×U(1)/ZK , where K is the least common multiple of (n, r), and w...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملCollision dynamics and rung formation of non-Abelian vortices.
We investigate the collision dynamics of two non-Abelian vortices and find that, unlike Abelian vortices, they neither reconnect themselves nor pass through each other, but create a rung between them in a topologically stable manner. Our predictions are verified using the model of the cyclic phase of a spin-2 spinor Bose-Einstein condensate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2014
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-014-2016-y